531 research outputs found

    Dendritic growth and structure of undercooled nickel base alloys

    Get PDF
    The principal objectives of this overall investigation are to: study means for obtaining high undercooling in levitation melted droplets, and study structures produced upon the solidification of these undercooled specimens. Thermal measurements are made of the undercooling, and of the rapid recalescence, to develop an understanding of the solidification mechanism. Comparison of results is made with the modeling studies. Characterization and metallographic work is done to gain an understanding of the relationship between rapid solidification variables and the structures so produced. In ground based work to date, solidification of undercooled Ni-25 wt percent Sn alloy was observed by high-speed cinematography and the results compared with optical temperature measurements. Also in ground based work, high-speed optical temperature measurements were made of the solidification behavior of levitated metal samples within a transparent glass medium. Two undercooled Ni-Sn alloys were examined. Measurements were carried out on samples at undercoolings up to 330 K. Microstructures of samples produced in ground based work were determined by optical metallography and by SEM, and microsegregation by electron microprobe measurements. A series of flight tests were planned to conduct experiments similar to the ground based experiments. The Space Shuttle Columbia carried an alloy undercooled experiment in the STS 61-C mission in January 1986. A sample of Ni-32.5 wt percent Sn eutectic was melted and solidified under microgravity conditions

    The materials processing research base of the Materials Processing Center

    Get PDF
    The investigation and evaluation of materials processing techniques in metals, alloys, polymers, and crystal growth are described

    The materials processing research base of the Materials Processing Center. Report for FY 1982

    Get PDF
    The work described, while involving research in the broad field of materials processing, has two common features: the problems are closed related to space precessing of materials and have both practical and fundamental significance. An interesting and important feature of many of the projects is that the interdisciplinary nature of the problem mandates complementary analytical modeling/experimental approaches. An other important aspect of many of the projects is the increasing use of mathematical modeling techniques as one of the research tools. The predictive capability of these models, when tested against measurements, plays a very important role in both the planning of experimental programs and in the rational interpretation of the results. Many of the projects described have a space experiment as their ultimate objective. Mathematical models are proving to be extremely valuable in projecting the findings of ground - based experiments to microgravity conditions

    The materials processing research base of the Materials Processing Center

    Get PDF
    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis

    Solidification mechanism of highly undercooled metal alloys

    Get PDF
    Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation

    Alloy undercooling experiments

    Get PDF
    The research accomplished during 1995 can be organized into three parts. The first task involves analyzing the results of microgravity experiments carried out using TEMPUS hardware during the IML-2 mission on STS-65. The second part was to finalize ground-based experimentation which supported the above flight sample analysis. The final part was to provide technical support for post-flight mission activities specifically aimed at improving TEMPUS performance for potential future missions

    Directional solidification at ultra-high thermal gradient

    Get PDF
    A high gradient controlled solidification (HGC) furnace was designed and operated at gradients up to 1800 C/cm to continuously produce aluminum alloys. Rubber '0' rings for the water cooling chamber were eliminated, while still maintaining water cooling directly onto the solidified metal. An HGC unit for high temperature ferrous alloys was also designed. Successful runs were made with cast iron, at thermal gradients up to 500 C/cm

    Solidification of binary hypoeutectic alloy matrix composite castings

    Get PDF
    We consider a binary hypoeutectic alloy casting which solidifies in dendritic form in an unreinforced engineering casting and seek to predict its microstructure in a metal matrix composite. We focus on the case where the reinforcement is fixed in space and fairly homogeneously distributed. We assume that the reinforcement does not catalyze heterogeneous nucleation of the solid. We show that the reinforcement can cause several microstructural transitions in the matrix alloy, depending on the matrix cooling rate, the width, Lambda, of interstices left between reinforcing elements, and the initial velocity V of the solidification front. These transitions comprise the following: (1) coalescence of dendrite arms before solidification is complete, causing solidification to proceed in the later stages of solidification with a nondendritic primary phase mapping the geometry of interstices delineated by reinforcement elements; (2) sharp reduction or elimination of microsegregation in the matrix by diffusion in the primary solid matrix phase; and (3) a transition from dendrite to cell formation, these cells featuring significant undercoolings or a nearly plane front configuration when reinforcing elements are sufficiently fine. Quantitative criteria are derived for these transitions, based on previous work on composite solidification, observations from directional solidification experiments, and current solidification theory. Theory is compared with experimental data for aluminum-copper alloys reinforced with alumina fibers and for the dendrite to cell transition using data from directional succinonitrile-acetone solidification experiments. Theory and experiment show good agreement in both systems

    Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout

    Get PDF
    As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement
    corecore